

Environment & Ecosystem Science (EES)

DOI: http://doi.org/10.26480/ees.02.2024.143.155

ISSN: 2521-0882 (Print) ISSN: 2521-0483 (Online) CODEN: EESND2

RESEARCH ARTICLE

IMPACT OF TOLL ROAD CONSTRUCTION ON BIODIVERSITY: AN ANALYSIS OF FLORA AND FAUNA IN INDONESIA

Isworo*. P.S. Oetari

Departament of Environmental Health, Dian Nuswantoro University Semarang, Indonesia. *Corresponding author Email: slamet.isworo@dsn.dinus.ac.id

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article History:

Received 03 September 2024 Revised 07 October 2024 Accepted 10 October 2024 Available online 18 November 2024

ABSTRACT

The construction of toll roads in Indonesia significantly changes land use, highlighting the need for effective environmental management. A major concern is the loss of endemic habitats, which can lead to biodiversity extinction. This research analyzes the diversity and conservation status of flora and fauna in the affected area, using vegetation analysis for flora and the point count method for fauna. The results of the vegetation analysis indicate that the species composition includes 12 species from the Fabaceae family, 7 species from Asteraceae, and 5 species from Moraceae. The highest Importance Value Index in the tree stratum is attributed to Swietenia macrophylla. The highest flora diversity index is found in the herbaceous stratum (H' = 3.25), while the diversity indices for other groups are as follows: dragonflies (H' = 1.24), Lepidoptera (H' = 3.26), avifauna (H' = 2.25), and herpetofauna (H' = 2.07). Regarding the conservation status of flora taxa, Dalbergia latifolia and Swietenia macrophylla are classified as vulnerable, while Tectona grandis is considered endangered. In the Lepidoptera group, Spalgis epius and Mycalesis horsfieldii are categorized as endangered, while Euploea mulciber and Orsotriaena medus are vulnerable. Rubiqula dispar and Acridotheres javanicus are classified as vulnerable species within the avifauna group. Although the construction of the toll road will involve clearing part of the forest that includes Tectona grandis and its associated fauna, this impact is deemed manageable because no species require specialized habitats. For reforestation efforts, it is recommended to plant Ficus spp., Swietenia macrophylla, Dalbergia latifolia, and Tectona grandis.

KEYWORDS

Biodiversity, Endemic Habitats, Flora and Fauna, Conservation Status, Reforestation

1. Introduction

The construction of toll roads represents a strategic transportation investment in Indonesia aimed at fostering economic growth and promoting equity. One such initiative is the development of the Solo-New Yogyakarta International Airport Toll Road, which is part of the national strategic programs currently being implemented by the government, as outlined in Presidential Regulation Number 109 of 2020 regarding the acceleration of national strategic projects (Temenggung et al. 2021). The Solo-New Yogyakarta International Airport Toll Road is being constructed in three segments. Section 2 is the construction of the Solo - New Yogyakarta International Airport Toll Road with a road length of 22.40 kilometers and a road area of 6,808,048 square meters (Hasiholan, Ismanti, and Rifa'i 2023). According to Government Regulation Number 4 of 2021, the construction of a 22.40 km long toll road and land acquisition of 177.44 ha (≥ 20 ha) require environmental impact analysis documents.

The Indonesian Ministry of Environment and Forestry will grant environmental permission for these activities. (Isworo 2023). Toll road building is predicted to modify land use and is the primary driver of biodiversity changes, hence interfering with the composition and variety of flora and animals at development sites. (Assidiq, Al Mukarramah, and Bachril 2021). Environmental Impact Analysis is a scientific study to achieve the goal of making decisions in accordance with sustainable environmental principles. This research only focuses on biological elements, namely the influence on biological components that are likely to experience fundamental changes as a result of the action in question, as follows: (Bond et al. 2020). The biological element of the environmental

components impacted is an essential part in environmental impact analysis studies, which are the primary focus of impact analysis.

Vegetation analysis is an element of biology that examines the organization of a variety of species and forms, the structure of vegetation, or plant communities. Vegetation structure consists of growth form, stratification, and canopy closure. Vegetation analysis provides quantitative information regarding the structure and composition of plant communities. Vegetation analysis requires data on type, diameter and height to estimate the importance index of forest community components (Puletti et al. 2021). Avifauna is an important element in the unity of biological aspects that must be studied. Avifauna are species that live in a particular ecosystem and depend on vegetation for their life. Avifauna diversity is the abundance or number of avifauna found in a particular area. The diversity of avifauna species in a location reflects the integrity and richness of the ecosystem as a whole. Avifauna species serve as environmental markers that are rich in biodiversity, therefore, efforts to protect and conserve them are very important to prevent avifauna population decline. (Gibru and Mengesha 2019).

Dragonflies play a crucial part in ecological balance. Aside from that, dragonflies may be used to assess the quality of the aquatic environment because they reside in water throughout the nymph phase. Changes in water quality have a significant impact on the number of dragonfly nymphs, making them a useful indication of whether the water is clean or dirty. Polluted water disrupts the life cycle of dragonflies, causing population numbers to fall (Perron and Pick 2020). Butterflies (Lepidoptera) provide ecological significance as part of the food chain, prey for predators, and pollinators, ensuring the sustainability of plant

Quick Response Code Access this article online

Website: www.environecosystem.com

DOI:

10.26480/ees.02.2024.143.155

regeneration and the balance of the environment. Butterflies' global nature leads to their widespread distribution in a variety of habitats. To overcome the loss in environmental quality, one strategy is to assess the link between variables that produce environmental disturbances and bioindicators. Butterflies have promise as bioindicators since they are sensitive to changes in their surroundings (Frahtia, Attar, and Diabi 2022).

Herpetofauna is an essential component of the food chain and a useful bioindicator for describing ongoing environmental changes. The variety and composition of herpetofauna species are influenced by the structure of their environment. Many changes in habitat structure induced by human activities have a detrimental influence on natural herpetofauna species diversity. Small environmental changes can affect the lives of herpetofauna, and many herpetofauna species are herpetofauna-specific. Certain herpetofauna can only thrive in extremely particular settings and are highly sensitive to habitat changes (Howell 2023). contribute significantly to ecological equilibrium. Mammals are in charge of soil fertility, flower pollination, seed dissemination, and ecological pest management. Mammals can preserve ecological equilibrium and contribute significantly to forest dynamics. If these animal species disappear, the forest vegetation pattern will shift, resulting in a loss of plant species variety. Environmental diversity and quality influence the quantity and species of animals in a given area (Lacher Jr et al. 2019).

The decrease in biodiversity is a key problem in all development efforts that harm biological and natural resources. The conservation state of flora

and fauna is critical in terms of biodiversity extinction in particular areas. The conservation condition of flora and wildlife, biodiversity, and environmental impact analysis must all be fully integrated. (Bond et al. 2021). The International Union for Conservation of Nature and Natural Resources' Red List is a common international standard for assessing wildlife. The red list is a list of species that are on the verge of extinction, along with their critical status, population condition, and natural range, as well as the factors that jeopardize their long-term viability and efforts to conserve them (IUCN 2021).

Protection status based on PP No. 7 of 1999, CITES status, and IUCN Redlist status are the primary statuses used in biodiversity assessments (Lee et al. 2019). The aim of this research is to analyze biodiversity and the conservation status of flora and fauna, and make recommendations based on the biological conditions found regarding the environmental impacts resulting from the construction of the Solo-New Yogyakarta International Airport toll road.

2. RESEARCH METHODOLOGY

2.1 Tools and Materials

The instruments and materials utilized in the biodiversity study are as follows: (Table 1)

	Table 1: List of	instruments used	to observe each ta	ixon investigated.		
Name of to al /material			The tax	a investigated		
Name of tool/material	Flora	Avifauna	Dragonfly	Butterfly	Mammals.	Herpetofauna
Observation plot	V	-	-	-	-	-
Phi-band/meter	V	-	-	-	-	-
Specimen plastic	V	-	-	-	-	-
Cut the branches	V	-	-	-	-	-
Digital camera	V	V	V	V	V	V
Road sign	V	V	V	V	V	V
Rangefinder	V	-	-	-	-	-
Binoculars	-	V	-	-	V	-
Telephoto lens (300mm)	V	V	V	V	V	V
Insect net	-	-	V	V	-	-
Stick handler	-	-	-	-	-	V
Papilot paper	-	-	V	V	-	-
Headlamp	-	-	-	-	-	V
Caliper (Vernier calipers)	-	-	-	-	-	V
Ruler	V	-	V	V	-	V
Camera Trap	-	-	-	-	V	-
Spacious meter	V	-	-	-	-	-
Hand counters	-	V	V	V	-	-
Fledgling tape	V	V	V	V	V	V
GPS	V	V	V	V	V	V
Label	V	_	V	V	-	V
MMC Camera	V	V	V	V	V	V
2 meter steel sling	-	-	-	-	V	-
Wire Clips	-	-	-	-	V	_
Machete	V	V	-	-	V	V
Observation Form	V	V	V	V	V	V
Stationery	V	V	V	V	V	V
Harvester marker	V	V	V	V	V	V
Identification manual	V	V	V	V	V	V
Lux meters	V	V	V	V	V	V
Soil tester	V	V	V	V	V	V
Thermohygrometer	V	v	V	V	V	V

2.2 Sampling Location

The flora and fauna survey was based at Kaligondang village, district Temon, Kulon Progo regency is the most complete site and activity plan, with an area of $\pm 131,000 \text{ m}^2$, equivalent to 327 grids of 20x20. The survey

took place on July 25–29, 2023, and comprised an investigation of flora or plants, avifauna (birds), odonata (dragonflies), lepidoptera (butterflies), mammals, and herpetofauna (amphibians and reptiles). Figure 1 depicts sampling of biological component locations based on a 20x20 m grid, while Figure 2 describes the dominant land cover at the survey site.

Figure 1: Sampling of biological components based on a 20x20 m grid.

Figure 2: Description of the dominant land cover at the survey location

According to a preliminary study, the site area's habitat is homogenous vegetation, with *Tectona grandis*), *Swietenia macrophylla*, and *Acacia auriculiformis* being generally dominant. This place has a lowland vegetation region with an altitude range of 33–104 m above sea level, a somewhat dry climate with an air temperature of 27.2–30.1 $^{\circ}$ C, an air humidity of 51–75%, and soil wetness ranging from 8% to 60%. The table 1 below presents more detailed information on environmental conditions:

Table 1: Environmental parameter values in the observation area					
Indicator	Path 1	Path 2	Path 3		
Light Intensity (Lux)	951-5185	583-2347	1488-4872		
Air Temperature ((°C)	27.2-28.8	29-30.1	28-28.1		
Soil pH	6.5-7	6.5-6.9	6,8-6.9		
Air Humidity (%)	51-75	55-60	52-56		
Soil Moisture (%)	20-50	20-60	20-30		

Source: primary data 2023

2.3 The Taxa Examined in the Research

2.3.1 Flora

An exploratory qualitative methodology is used in the investigation with purposive sampling techniques. Flora data were collected using a quadratic technique, with nine observation plots assigned to three observation lines. On each route, three 20x20 observation plots were planted sequentially using the belt transect approach (Figure 3). Each kind in each layer of the observation plot is identified directly. Each individual's dominance in the tree, pole, and sapling layers of each quadrat was determined by measuring the trunk diameter at breast height. Meanwhile, for the chick layers, simply the number of individuals of each kind is recorded. For undergrowth, 2x2 m subplot was established, and the percentage canopy cover was calculated.

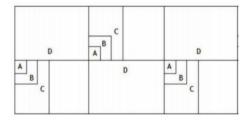


Figure 3: Plot placement model using the belt transect principle

Figure 1 Plot placement model using the belt transect principle: A. 2x2 m plot for undergrowth and sapling strata; B. 5x5 m plot for sapling strata; C. 10x10 m plot for pole strata; and D. 20x20 plot for tree strata. Table 2. shows the distribution of plot size and borders for each strata analyzed.

Table 2: Plot size and boundaries in ech stratum for plant taxa				
Strata	Strata Limitation			
Tree	Diameter >20cm	20x20		
Pole	Diameter =/ >10-20 cm	10x10		
Stake	Diameter <10 cm, height >1.5 m	5x5		
Saplings	Diameter <10 cm, height <1.5 cm	2x2		

The exploration of plant types not found in the plot was carried out using the connecting paths between observation points and exploration is carried out to complete the list of plant types identified inside the survey site.

2.3.2 Avifauna

Avifauna data was collected in the field using the Indices Ponctuels d'Abondance (IPA) or Point Count technique. The observer stops at a spot in the studied area and counts all birds identified (both visually and audibly) throughout a 20-minute period. The distance between two points is 100 metres, and the observer's seeing radius is 25 metres.(Akçay et al. 2020).

Data was collected over three days, with daily observations at three places and repetition at each (for a total of six sets of data per point. Observations were conducted in the morning from 06.00 to 09.00 West Indonesia Time, with repeats taking place in the afternoon from 15.00 to 18.00 West Indonesia Time. Each bird sighted throughout the survey period was identified by kind, number of birds, and time of contact. Each kind is documented to help with identification both in the field and at basecamp. Sound identification allows for the recording of bird calls, which are subsequently recognized in basecamp using bird sound guide (Purnamaningrum, Bihi, and Harits 2021)

2.3.3 Odonata dan Lepidoptera

Dragonfly and butterfly species were observed using the Visual Encountering Survey (VES) approach along three specified transect lines. Data was collected twice, with one repetition per observation line (for a total of three sets of line data. Observations were performed by walking along a transect path and noting all varieties of dragonflies and butterflies, the number of individuals of each type, and their activity throughout the observation period (08.00 to 13.00 West Indonesia Time). Observed

behaviors include feeding, oviposition (laying eggs), perching and/or sunbathing, flying, and mating. Species whose scientific names are unknown are collected using an insect net, placed in papilot paper, and given a temporary labeled for subsequent identification at the basecamp in accordance with the criteria used.

2.3.4 Mamalia

The animals observed in this study included arboreal and terrestrial mammals, as well as a variety of other wild species. Observations of mammals are carried out through 3 variations of methods: (1) visual encounters using the point count method, (2) observation of various markers of presence (footprints, droppings, claw marks, sounds, voices, and so on) on the path, and (3) installation of a of a camera trap. Each point is observed for 20 minutes with three repetitions, whereas camera traps can be installed in the desired location, taking into account factors such as animal paths, the discovery of traces/feces, food and drink sources, and so on. Camera traps can automatically record animal activities. Camera traps can overcome limitations in direct monitoring of mammals, such as at night. There was 1 camera trap installed in this survey over a period of 4 days. Mammal taxa were identified using point counts and camera traps by comparing numerous sources, such as a Book Titled Conservation Status and Role of Mammals on the Island of Java (Amori, Gippoliti, and Helgen 2008). Meanwhile, numerous indications indicating the presence of mammals on the route were discovered by assessing footprint form, number of toes, presence of hoof impressions, and claw depth. Identification is accomplished by comparing the paperwork and samples collected to the criteria followed

2.3.5 Herpetofauna

The Visual Encounter Survey (VES), like that of Lepidoptera and Odonata, is the primary method for gathering data on herpetofauna. Data collection is based on individual contacts in each category on the observation path, which is separated into three routes. Each route combines the VES and transect/lane methods. What distinguishes data collection from dragonflies and butterflies is that there are two observation times: 07:00–11:30 West Indonesia Time for diurnal herpetofauna and 18:30–21:00 West Indonesia Time for nocturnal herpetofauna.

3. IDENTIFICATION AND NAMING OF SPECIES

Plant taxa are recognized by comparing the physical characteristics of the flora, both generative (flowers and fruit) and vegetative (stature, stem, leaves, leaf arrangement), contained in identification books. Avifauna taxa are recognized by comparing the results of documentation or observations in the form of general characteristics and the color of each type's feather patterns with identification guides (MacKinnon 2021) Odonata taxa were recognized by matching morphological features such as the shape, pattern, and color of the abdomen (stomach), eyes, thorax (chest), and wing venation to Semarang Raya's Odonata standards. (Grimaldi 2023) Lepidoptera taxa are recognized by examining the body size, color, venation, and patterns on the wings, as well as the overall form of the wings, and then comparing them to the identification guide.

Mammal taxa recorded using point counts and camera traps were recognized by comparing numerous sources, such as a book entitled Conservation Status and Role of Mammals on the Island of Java. (Maharadatunkamsi et al., (2020). Meanwhile, the existence of different markers (footprints, dirt, claw marks, sounds, noises, and so on) on the path is determined by measuring the kind of footprint, number of toes, presence of nail prints, and depth of scratches. Measure the length and breadth of the feces, as well as the type of feed that remains in the feces. Identification results can be compared with other references to prior discoveries, such as a book entitled "A Guide to Tracks of Mammals in Western Indonesia.". (Francis 2019).

The names are based on scientific and English identities. Scientific nomenclature is standardized by utilizing the Global Biodiversity Information Facility (GBIF) online database. (https://www.gbif.org/). Scientific nomenclature for flora taxa is based on online data from the World Checklist of Selected Plant Families/WCSP (https://wcsp.science.kew.org), while GBIF data is still used internationally. Additional Indonesian names for bird species may be found in the Indonesian Bird List 2. While the English name and scientific name according to the Handbook of the birds of the world and BirdLife International digital checklist of the birds of the world (Westrip 2022)

4. DIVERSITY INDEX, AND COMMUNITY STABILITY

Community stability may be measured by computing the diversity value of each species based on the Shannon-Wiener (H') calculation using the

Diversity tool facility from the Past4 Project application, as follows:. (She et al. 2023)

$$H' = -\Sigma Pi. \ln Pi$$

$$Pi = \frac{ni}{N}$$

H' is the Shannon-Wiener diversity index, and Pi is the proportion of importance of type i (ni) to all species in each taxa (N).

Importance values for flora taxa are determined by computing the Important Value Index (INP) for each type seen within plot coverage. The INP value of the tree, sapling, and pole strata is calculated by summing the relative values of three vegetative factors, dominance, density, and frequency. Meanwhile, for tiller layers, the INP value is solely determined by density and frequency. Understory plants' INP is governed by two vegetative parameters: dominance and frequencyv(Ahmed et al. 2020). In general, INP calculations may be expressed using the following formula:

$$NPi = DoRi + DeRi + FRi$$

Note: H' is the Shannon-Wiener diversity index, and Pi is the proportion of importance value of type i (ni) to all species in each taxa (N).

In contrast to the importance value of flora taxa, the importance value of fauna taxa (avifauna, odonata, lepidoptera, mammals, and herpetofauna taxa) is determined by the number of individuals of each type, whereas the Pi value is calculated by dividing the number of individuals of type i by the total number of individuals found.

5. RESULT AND DISCUSSION

5.1 Overview of the Research Location

Based on the data from environmental parameter measurements (Table 1) in the observation area, the light intensity ranges from 583 Lux to 4872 LuxPath 1 has the highest light intensity range, from 951 to 5185 Lux. Path $2\ has\ a\ range\ of\ 583\ to\ 2347\ Lux,$ while Path 3 has a light intensity range of 1488 to 4872 Lux. This varying light intensity can affect the photosynthetic activity of plants in the observation area, which plays an important role in providing energy for chlorophyll-containing plants. The ideal light intensity for photosynthesis in forests typically ranges from 1000 to 2500 Lux; however, for plants growing under a denser forest canopy, the light intensity may be lower, ranging from 100 to 1000 Lux. Each type of plant has different light requirements, so this range can vary depending on the species. In tropical forests, productive light intensity during the day can reach up to 10,000 Lux at the forest canopy level, while in the understory, it ranges from 100 to 2000 Lux. (Schuh and Immich 2022). In general, the range of light intensity measured in the data can support the growth of various types of plants, indicating the potential for ecosystem diversity in the observation area.

The air temperature (°C) throughout the paths is relatively consistent, ranging from 27.2°C to 30.1°C. This range is suitable for tropical plants, which typically thrive in these temperatures (Dantas et al. 2020). The soil pH in all areas measured close to neutral, ranging from 6.5 to 7.0. This pH range is generally favorable for plant growth, as many tropical plants thrive in slightly acidic to neutral conditions. (INUWA and BILYAMINU 2020). Air humidity ranges from 51% to 75%, which generally supports the growth of tropical plants in the research area. Although Path 2 exhibits a lower humidity range of 55% to 60%, this condition remains within the acceptable tolerance levels for plant growth. (Priya and Senthil 2021).

Soil moisture percentages vary across the paths: Path 1 shows a relatively high variation, ranging from 20% to 50%, while path 2 and path 3 have lower moisture ranges of 20% to 60% and 20% to 30%, respectively. overall, a soil moisture range of 20% to 60% is considered favorable for plant health. (Krisnawati and Adie 2017). The observation areas displayed generally favorable conditions for tropical plant growth, with suitable temperature and pH levels. However, variations in light intensity and soil moisture among the different paths indicate that some locations may be more optimal than others, potentially affecting plant productivity. Further monitoring of these parameters is essential to understand their overall impact on plant growth.

5.2 Species richness/species composition

There were 165 species from 67 families recognized throughout the five groups investigated. Plants (66 species), avifauna and butterflies (36 each), herpetofauna (15 types), dragonflies (7 types), and mammals (4 types) are listed in order of number of types.

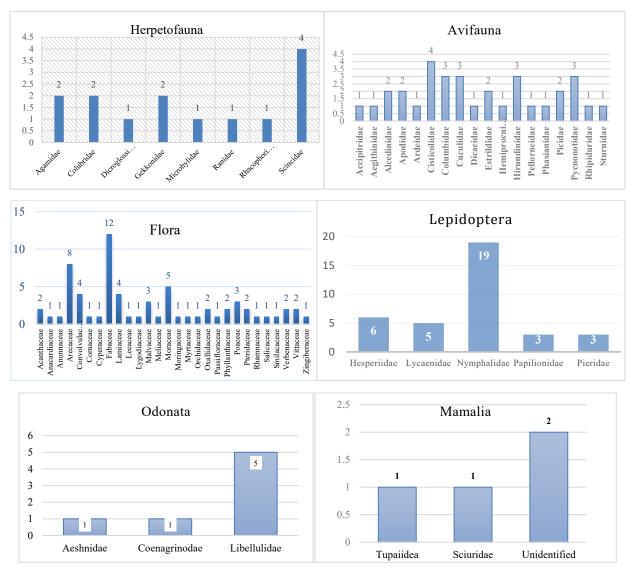


Figure 4: Species composition is based on the taxonomy studied

5.3 Flora

The flora survey covers 3,600 square meters. Based on early survey data, the types of vegetation encountered tended to be uniform, with the primary stands being teak (*Tectona grandis*) and mahogany (*Swietenia macrophylla*), and the opportunities in all observation areas were not

significantly different. Because the surveyed area is adjacent to community settlements, the plants found there are mostly production plants, as evidenced by the dominance of Teak (*Tectona grandis*) and Mahogany (*Swietenia macrophylla*) at the tree and pole levels, as well as the Gamal (Gliricidiasepium) at the sapling level. (Mayasari et al., 2012).

	Table 3: Flora types identified at the study location							
No	Family	Scientific name	Local name	IUCN	CITES	UU		
1	Acanthaceae	Andrographis paniculata	Sambiloto	LC	Not listed	No		
2	Acanthaceae	Ruellia repens	Kecubung Tanah	LC	Not listed	No		
3	Anacardiaceae	Mangifera indica	Mangga	LC	Not listed	No		
4	Anonnaceae	Anonna squamosa	Sirsak	LC	Not listed	No		
5	Arecaceae	Cocos nucifera	Kelapa	LC	Not listed	No		
6	Asteraceae	Ageratum conyzoides	Bandotan	LC	Not listed	No		
7	Asteraceae	Chromolaena odorata	Krinyuh	LC	Not listed	No		
8	Asteraceae	Elephantopus scaber	Tapak Liman	LC	Not listed	No		
9	Asteraceae	Emilia sonchifolia	Kukut Jawa	LC	Not listed	No		
10	Asteraceae	Porophyllum ruderale	Ketumbar Bolivia	LC	Not listed	No		
11	Asteraceae	Synedrella nudiflora	Enceng Gondok Hutan	LC	Not listed	No		
12	Asteraceae	Tridax procumbens	Rumput Semalu	LC	Not listed	No		
13	Convolvulaceae	Ipomoea obscura	Kangkung Hutan	LC	Not listed	No		
14	Convolvulaceae	Merremia caespitosa	Bunga Beruk	LC	Not listed	No		
15	Convolvulaceae	Merremia emarginata	Bunga Kunci	LC	Not listed	No		
16	Convolvulaceae	Merremia hederacea	Bayam Hutan	LC	NA	No		

	Table 3 (Cont.): Flora types identified at the study location							
17	Cornaceae	Alangium chinense	Cepokak	LC	Not listed	No		
18	Cyperaceae	Carex sp	Rumput teki	LC	Not listed	No		
19	Fabaceae	Acacia auriculiformis	Akasia	LC	Not listed	No		
20	Fabaceae	Albizia chinensis	Sengon	LC	Not listed	No		
21	Fabaceae	Caliandra sp	Kaliandra	LC	Not listed	No		
22	Fabaceae	Calopogonium mucunoides	Daun Bambangan	LC	Not listed	No		
23	Fabaceae	Centrosema pubescens	Senduro	LC	Not listed	No		
24	Fabaceae	Dalbergia latifolia	Sono keling	VU	Listed II	Yes		
25	Fabaceae	Flemingia macrophylla	Klepu	LC	Not listed	No		
26	Fabaceae	Flemingia strobilifera	Kletingan	LC	Not listed	No		
27	Fabaceae	Gliricidia sepium	Kaliandra	LC	Not listed	No		
28	Fabaceae	Leucaena leucocephala	Kemanding/Lamtoro	LC	Not listed	No		
29	Fabaceae	Mimosa pudica	Putri malu	LC	Not listed	No		
30	Fabaceae	Samanea saman	Trembesi	LC	Not listed	No		
31	Lamiaceae	Hyptis capitata	Jinten Hitam	LC	Not listed	No		
32	Lamiaceae	Leucas lavandulifoia	Meniran	LC	Not listed	No		
33	Lamiaceae	Salvia occidentalis	Kecibeling	LC	Not listed	No		
34	Lamiaceae	Tectona grandis	Jati	EN	Listed II	Yes		
35	Leeaceae	Leea indica	Mindi Jawa	LC	Not listed	No		
36	Lygodiaceae	Lygodium microphyllum	Pakis Gajah	LC	Not listed	No		
37	Malvaceae	Corchorus aestuans	Daun Ketumbar	LC	Not listed	No		
38	Malvaceae	Sida rhombifolia	Sida guri	LC	Not listed	No		
39	Malvaceae	Urena lobata	Pulutan	LC	Not listed	No		
40	Meliaceae	Swietenia macrophylla	Mahoni	VU	Listed II	No		
41	Moraceae	Ficus callosa	Ilat-ilatan	LC	Not listed	No		
42	Moraceae	Ficus hispida	Keluwih	LC	Not listed	No		
43	Moraceae	Ficus montana	Uyah-uyahan	LC	Not listed	No		
44	Moraceae	Ficus septica	Awar-awar	LC	Not listed	No		
45	Moraceae	Ficus tinctoria	Kelor Laut	LC	Not listed	No		
46	Moringaceae	Moringa oleifera	Kelor	LC	Not listed	No		
47	Myrtaceae	Syzigium cumini	Jamblang/Juwet	LC	Not listed	No		
48	Orchidaceae	Didymoplexis pallens	Bunga Lidah Bab	LC	Not listed	No		
49	Oxallidaceae	Oxalis barrelieri	Calincing	LC	Not listed	No		
50	Oxallidaceae	Paederia foetida	Daun kentut	LC	Not listed	No		
51	Passifloraceae	Passiflora foetida	Passiflora liar	LC	Not listed	No		
52	Phyllanthaceae	Phyllanthus urinaria	Meniran	LC	Not listed	No		
53	Phyllanthaceae	Pyhllanthus niruri	Meniran	LC	Not listed	No		
54	Poaceae	Axonopus compressus	Rumput gajah mini	LC	Not listed	No		
55	Poaceae	Brachiaria reptans	Waderan	LC	Not listed	No		
56	Poaceae	Imperata cyllindrica	Alang-alang	LC	Not listed	No		
57	Pteridaceae	Pteris ensifolia	Pakis	LC	Not listed	No		
58	Pteridaceae	Pteris vittata	Paku Gajah	LC	Not listed	No		
59	Rhamnaceae	Ziziphus mauritiana	Bidara	LC	Not listed	No		
60	Salicaceae	Flacourtia indica	Rambeh Jawa	LC	Not listed	No		
61	Smilacaceae	Smilax sp	Akar Saga	LC	Not listed	No		
62	Verbenaceae	Lantana camara	Tembelekan	LC	Not listed	No		
63	Verbenaceae	Stachytarpetha jamaicensis	Pecut Kuda	LC	Not listed	No		
64	Vittaceae	Causonis trifolia	Arbei	LC	Not listed	No		
65	Vittaceae	Vitex pinnata	Suruh	LC	Not listed	No		
66	Zingiberaceae	Curcuma zanthorrhiza	Temulawak	DD	Not listed	No		

Information:

Note:

a) IUCN b) CITES c) Indonesia regulation

Status of protection, IUCN Based on the conservation status of the page International Union for Conservation of Nature and Natural Resources/IUCN (https://www.iucnredlist.org) with status, Global Population: The status of global population development is displayed in

the status IUCN: DD = Data Deficient, LC: Least Concern (less attention or low risk), CR: Critically Endangered (critical or threatened with extinction in the near future), VU: Vulnerable (vulnerable or at risk of extinction in the wild). Indonesia Regulation Indonesia Regulation P.106/MENLHK/SETJEN/KUM.1/12/2018 of the Minister of Environment and Forestry of the Republic of Indonesia, The IUCN red list categories are low risk (least concern, LC), vulnerable (vulnerable, VU) and danger (endangered, EN) and lack of data (data deficient, DD);

Based on the species composition, the plant families commonly found in this study are Fabaceae (12 types), Asteraceae (7 types) and Moraceae (5 types). It is very natural that these two plant families are common, especially in the teak forest ecosystem type. This is because systematically, the three families have quite a large number of members, Asteraceae with 32,913 species, Fabaceae with 24,505 species, and Moraceae with 1,217 species. (Aumeeruddy and Mahomoodally 2022) (Soerjani 1987), these three plant families have a very wide range of habitats and very good adaptability; and deliberately planted by the community, especially for the Fabaceae (Table 4).

Table 4: Importance value index and species diversity at the study location

location						
Cunaina mama	Local name	Import	ance Valu	e Index		
Species name	Local name	Stake	Pole	Tree		
Acacia auriculiformis	Akasia	38,22%	44,57%	47,92%		
Albizia chinensis	Sengon	0,00%	0,00%	5,78%		
Caliandra sp.	Kaliandra	5,99%	2,22%	16,48%		
Cocos nucifera	Kelapa	0,00%	0,00%	12,33%		
Dalbergia latifolia	Sono keling	10,95%	13,45%	5,94%		
Ficus callosa	Ilat-ilatan	6,32%	2,22%	0,00%		
Ficus hispida	Waluh Hutan	16,59%	9,68%	0,00%		
Ficus tinctoria	Nyamplung	0,00%	0,00%	6,29%		
Gliricidia sepium	Kaliandra	41,21%	38,45%	5,89%		
Leucaena glauca	Kemanding/Lamtoro	5,82%	2,22%	0,00%		
Moringa oleifera	Kelor	0,00%	0,00%	6,05%		
Swietenia macrophylla	Mahoni	101,02%	101,91%	122,62%		
Syzigium cumini	Jamblang/Juwet	0,00%	0,00%	6,46%		
Tectona grandis	Jati	73,89%	85,27%	64,23%		
Diversity	Index (H')	1,763613	1,629886	1,752625		

Source: Primary Data 2023

The diversity index of annual plants (perennials) has a low value in all strata (H'<2). This shows that the annual plant community in the study area is very sensitive to the extinction of a particular species. As the name suggests, teak wood is dominated by teak trees; however, mahogany and acacia are also widespread in this type of habitat. Because these species are dominant, and there are only 18 different t ree species in the plot, the diversity value is naturally low Compared to perennial plants, understory plants have a high diversity value of H'=3.25 and good stability. The understory plant community will continue to operate well because other plant kinds may fill the ecological gaps left by other species. In general, the types of undergrowth discovered during sampling are weeds capable of adapting to varied environmental circumstances (McAlpine, Lamoureaux, and Timmins 2021). Krinyuh plants (Chromolaena odorata), tembelekan (Lantana camara), and other Asteraceae species has a wide range of light intensity also creates an environment that supports plants with different preferences, resulting in a considerably more diversified understory plant community than perennial plants.

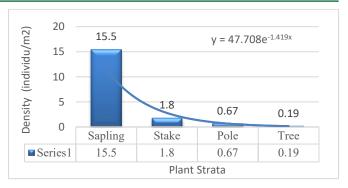


Figure 5: Density of Hardwood Plants at Each Stratum in the Sampling

Area

The sustainability of the plant community in the region analyzed is good, as represented in the graph by the trend of the J curve (exponential), which suggests there is plant regeneration, especially perennial plants in the area studied (Mazuze et al. 2024). Considering plants in the food chain as producers, the sustainability of these plants suggests that communities of other taxa will continue to exist in the future, as long as there is no disruption or human interference. The region explored demonstrates how plants are used by diverse creatures. Aside from serving as a home, the study's homogenous teak forest environment has a variety of flora that attract wildlife such as butterflies and birds. The presence of diverse undergrowth as food for butterflies such as Tembelekan (Lantana camara), horsewhip (Stachytarpetha jamaicensis), and numerous varieties of the Asteraceae. Homogeneous forest types, despite their low plant diversity, must be considered as animal habitats and providers of environmental services. As shown in plot 2.3 line 2, there is a former water source under the Ficus tinctoria tree, which has since dried up; however, a similar source that is still active was discovered outside the observation route, a type of Ficus with dense roots capable of binding water. (Berg and Corner 2005).

Based on Figure 5 (Exponential model Y = 47,708 e -1.419x) there is strong potential for regeneration through the sapling strata, there is a decline in the other strata, creating challenges that must be addressed. Actions are needed to support the growth of young plants so they can develop into mature trees and maintain the sustainability of the ecosystem. Actions are needed to support the growth of young plants and ensure they develop into mature trees, some of the actions that need to be taken are periodic monitoring and consistent monitoring of the growth of young trees, weed and invasive plant removal, use of organic fertilizers and pest and disease protection: take preventive measures to protect young trees from pests and diseases, and ensure their health and resilience(Fuentes-Montemayor et al. 2022).

5.4 Odonata (Dragonfly)

The dragonfly survey revealed seven different types of dragonflies from three families (Familia): Libellulidae, Coenagrionidae, and Aeshnidae. The Libellulidae family is the most numerous, having five different varieties, while the Coenagrionidae and Aeshnidae families each have 1 type. The Anisoptera suborder has the highest species abundance, namely 47 individuals from the 6 species observed. This is because dragonflies from the suborder Anisoptera themselves have the characteristics of a wide home range. (Fitriana 2016)

	Table 5: List of odonata types identified at the study location						
No	Family	Scientific name	Local name	IUCN	CITES	UU	
1	Aeshnidae	Gynacantha subinterrupta	Capung edar umbai temu	LC	Not listed	No	
2	Coenagrinodae	Agriocnemis femina	Capung jarum centil	LC	Not listed	No	
3	Libellulidae	Neurothemis ramburii	Capung tengget jala	LC	Not listed	No	
4	Libellulidae	Orthetrum chrysis	Capung sambar perut kait	LC	Not listed	No	
5	Libellulidae	Orthetrum sabina	Capung sambar hijau	LC	Not listed	No	
6	Libellulidae	Potamarcha congener	Capung sambar perut pipih	LC	Not listed	No	
7	Libellulidae	Tholymis tillarga	Capung sambar senja	LC	Not listed	No	
		Diversity Index (H'): 1,24					

Information: The IUCN red list category is low risk (least concern, LC)

The Libellulidae family has a large number of members, is cosmopolitan, making it possible to find it in various types of habitat. *Neurothemis ramburii* is the most prevalent kind in the three observation lines,

accounting for 30 individuals. This variety of dragonfly is considered to be particularly tolerant of drastic changes in the environment. It is an aggressive predator, thus it has excellent adaptability (Teristiandi and Riyanto 2021). Neurothemis ramburii nymphs can also endure environmental changes and water salinity. (Hasanah, Rohman, and Susanto 2021). Dragonflies are a very good indication of environmental health, especially in terms of water quality in a region.(Semiun et al. 2023).

It is even known that certain species have sensitivity to environmental changes, or otherwise only live in polluted areas (Rachmawati et al. 2023). Dragonflies also have another natural role as predators of small insects that disrupt agriculture. The dragonflies seen in the observation area suggest that the region is relatively dry and beginning to undergo disruptions. Dragonflies of the suborder Zygoptera are frequently observed in the streams near observation locations and in the grass of rice

fields. The study results revealed that the Agriocnemis femina dragonfly was only found along Route 1, one of the grassy areas. In the low category, dragonfly species had a Shannon-Winner diversity index of 1.24. A community has low diversity if the community is composed of few species (Pongen 2024)

5.5 Lepidoptera (Butterflies)

Butterflies provide several ecological services in an ecosystem, including pollination and environmental bioindicators. Butterflies have a deep relationship to plants and serve as bioindicators of environmental quality.(Chowdhury et al. 2023). Butterflies are also indicators of air pollution, as a result, butterflies are frequently found in cool regions with low pollution (Parikh, Rawtani, and Khatri 2021)

Table 6: List of lepidoptera identified at the study location							
No	Familia	Scientific name	Local name	IUCN	CITES	UU	
1	Hesperiidae	Borbo cinnara	Kupu-kupu padi.	NA	Not listed	No	
2	Hesperiidae	Iambrix salsala	Kupu-kupu lembu	NA	Not listed	No	
3	Hesperiidae	Matapa aria	Kupu-kupu ular	NA	Not listed	No	
4	Hesperiidae	Notocrypta paralysos	Kupu-kupu langit	NA	Not listed	No	
5	Hesperiidae	Parnara sp	Kupu-kupu rumput	LC	Not listed	No	
6	Hesperiidae	Potanthus ganda	Kupu-kupu pelipisan	NA	Not listed	No	
7	Lycaenidae	Catochrysops strabo	Kupu-kupu biru kecil	LC	Not listed	No	
8	Lycaenidae	Chilades pandava	Kupu-kupu biru pandan	LC	Not listed	No	
9	Lycaenidae	Jamides celeno	Kupu-kupu biru gelap	NA	Not listed	No	
10	Lycaenidae	Miletus boisduvali	Kupu-kupu kunir	NA	Not listed	No	
11	Lycaenidae	Spalgis epius	Kupu-kupu tengkek	NA	Not listed	No	
12	Nymphalidae	Cupha erymanthis	Kupu-kupu perang	NA	Not listed	No	
13	Nymphalidae	Discophora sondaica	Kupu-kupu sonda	NA	Not listed	No	
14	Nymphalidae	Doleschalia bisaltide	Kupu-kupu nyonya	NA	Not listed	No	
15	Nymphalidae	Euploea mulciber	Kupu-kupu raja	NA	Not listed	No	
16	Nymphalidae	Euploea sp.	Kupu-kupu raja	LC	Not listed	No	
17	Nymphalidae	Ideopsis juventa	Kupu-kupu biru	NA	Not listed	No	
18	Nymphalidae	Junonia erigone	Kupu-kupu mata satu	NA	Not listed	No	
19	Nymphalidae	Junonia hedonia	Kupu-kupu bintik	NA	Not listed	No	
20	Nymphalidae	Junonia iphita	Kupu-kupu labeo	NA	Not listed	No	
21	Nymphalidae	Melanitis leda	Kupu-kupu hitam	LC	Not listed	No	
22	Nymphalidae	Melanitis zithenius	Kupu-kupu petang	NA	Not listed	No	
23	Nymphalidae	Mycalesis horsfieldii	Kupu-kupu bulat	NA	Not listed	No	
24	Nymphalidae	Neptis hylas	Kupu-kupu padu	LC	Not listed	No	
25	Nymphalidae	Orsotriaena medus	Kupu-kupu raja	NA	Not listed	No	
26	Nymphalidae	Phalantha phalantha	Kupu-kupu pelipisan	NA	Not listed	No	
27	Nymphalidae	Polyura hebe	Kupu-kupu kapak	NA	Not listed	No	
28	Nymphalidae	Tanaecia palguna	Kupu-kupu rempah	NA	Not listed	No	
29	Nymphalidae	Ypthima horsfieldii	Kupu-kupu cacing	NA	Not listed	No	
30	Nymphalidae	Ypthima pandocus	Kupu-kupu cacing	LC	Not listed	No	
31	Papilionidae	Graphium agamemnon	Kupu-kupu raja	LC	Not listed	No	
32	Papilionidae	Papilio memnon	Kupu-kupu raja hitam	LC	Not listed	No	
33	Papilionidae	Papilio polytes	Kupu-kupu raja hijau	LC	Not listed	No	
34	Pieridae	Catopsilia pomona	Kupu-kupu kunir	LC	Not listed	No	
35	Pieridae	Eurema blanda	Kupu-kupu kuning	NA	Not listed	No	
36	Pieridae	Eurema hecabe	Kupu-kupu kuning kecil	LC	Not listed	No	
		Indeks Keaekaragaman (H') :	3,26				

Information:

The IUCN red list category is low risk (least concern, LC)

The survey findings showed 122 butterflies from 36 different families: Nymphalidae (19 kinds), Hesperiidae (6 types), Lycaenidae (5 types), Papilionidae (3 types), and Pieridae (3 types). Papilionidae has the fewest individuals, followed by Pieridae, Hesperiidae, and Lycaenidae. Meanwhile, the Nymphalidae is the butterfly family with the most members and species. The Nymphalidae family is a member of the

Rhopalocera suborder with the biggest number of species in comparison to other families. (Kirton 2021). Butterflies from members of the Nymphalidae family are polyphagous so they are easier to adapt and are found in various types of habitat (Mallick 2023).

The type of Nymphalidae butterfly with the most abundant number of individuals is Cupha erymanthis (14 individuals) followed by Ypthima horsfieldii (11 individuals). This is related to the discovery of *Flacourtia* which is the host plant or food for the larvae of the *Cupha erymanthis* (Nitin et al. 2018). Based on data collection, the *Flacourtia indica* plant species is

quite easy to find throughout the survey area. Likewise, Ypthima horsfieldii is quite easy to find due to the dominance of Poaceae throughout the survey area.

The analysis of diversity factors in the survey region yielded a species diversity index value of H'=3.26. This number falls into the high diversity category, suggesting that the butterfly community in the survey region is stable or does not have a dominant species. The study region has a high butterfly diversity value due to the variety of ecological conditions. The presence of varying light exposure and a variety of flowering plants that provide food for butterflies is likely to contribute to the high diversity value attained. The types of plants used to feed butterflies include Lantana camara, Stachytarpheta jamaicensis, and various types from the Asteraceae family. Like the shaded area on route 2, it is favored by several types of butterflies in the Nymphalidae family such as Melanitis leda, Mycalesis horsfieldii and Discophora sondaica. Meanwhile, another route with abundant light exposure supports butterflies - with their nature as poikilothermic animals - carrying out sunbathing or basking activities to

increase their body temperature. (Hasanah, Rohman, and Susanto 2021)(Rohman et al., 2019).

5.6 Avifauna (Birds)

The avifauna study identified 391 individuals from 29 bird species. These birds belong to 17 different families. Cuculidae, Nectariniidae, and Pycnonotidae are the families with the most species, each having three. Apodidae has the most members, with 118, followed by Estrildidae (110), and Cisticolidae (35). The type and coverage of horizontal vegetation are critical for the avifauna. Vegetation destruction causes various species of avifauna to become endangered as the components that can sustain them as a place to live and a source of food for various types of avifauna diminish. The existence of insect-eating bird species in the research region, as well as the ecology of teak woods that are ideal for insect habitat, tend to attract insects, which in turn draw the attention of birds that devour them. As a result, it is not unexpected that the researched plant species host a large number of insectivorous members of the Cuculidae and Apodidae families.

		Table 7: Types of avifauna identi	fied in the study area			
No	Familia	Scientific name	Local name	IUCN	CITES	UU
1	Accipitridae	Spilornis cheela	Elang-ular Bido	LC	II	Yes
2	Aegithinidae	Aegithina tiphia	Cipoh Kacat	LC	Not listed	No
3	Alcedinidae	Halcyon cyanoventris	Cekakak Jawa	LC	Not listed	No
4	Alcedinidae	Todiramphus chloris	Cekakak sungai	LC	Not listed	No
5	Apodidae	Apus nipalensis	Kapinis Rumah	LC	Not listed	No
6	Apodidae	Collocalia linchi	Walet Linci	LC	Not listed	No
7	Ardeidae	Bubulcus ibis	Kuntul kerbau	LC	Not listed	No
8	Cisticolidae	Cisticola juncidis	Cici padi	LC	Not listed	No
9	Cisticolidae	Orthotomus ruficeps	Cinenen Kelabu	LC	Not listed	No
10	Cisticolidae	Orthotomus sutorius	Cinenen Pisang	LC	Not listed	No
11	Cisticolidae	Prinia inornata	Perenjak padi	LC	Not listed	No
12	Columbidae	Geopelia striata	Perkukut jawa	LC	Not listed	No
13	Columbidae	Spilopelia chinensis	Tekukur Biasa	LC	Not listed	No
14	Columbidae	Treron vernans	Punai Gading	LC	Not listed	No
15	Cuculidae	Cacomantis merulinus	Wiwik Kelabu	LC	Not listed	No
16	Cuculidae	Cacomantis variolosus-sepulcralis	Wiwik Uncuing	LC	Not listed	No
17	Cuculidae	Phaenicophaeus curvirostris	Kadalan Birah	LC	Not listed	No
18	Dicaeidae	Dicaeum trochileum	Cabai Jawa	LC	Not listed	No
19	Estrildidae	Lonchura leucogastroides	Bondol Jawa	LC	Not listed	No
20	Estrildidae	Lonchura maja	Bondol Haji	LC	Not listed	No
21	Hemiprocnidae	Hemiprocne longipennis	Tepekong Jambul	LC	Not listed	No
22	Hirundinidae	Cecropis daurica	Layang-layang Loreng	LC	Not listed	No
23	Hirundinidae	Hirundo javanica	Layang-layang Batu	LC	Not listed	No
24	Hirundinidae	Hirundo rustica	Layang-layang Asia	LC	Not listed	No
25	Nectariniidae	Anthreptes malacensis	Burung-madu Kelapa	LC	Not listed	No
26	Nectariniidae	Arachnothera robusta	Pijantung Besar	LC	Not listed	No
27	Nectariniidae	Cinnyris jugularis	Burung-madu Sriganti	LC	Not listed	No
28	Pellorneidae	Malacocincla sepiaria	Pelanduk Semak	LC	Not listed	No
29	Phasianidae	Gallus varius	Ayam-hutan Hijau	LC	Not listed	No
30	Picidae	Dendrocopos analis	Caladi Ulam	LC	Not listed	No
31	Picidae	Dinopium javanense	Pelatuk Besi	LC	Not listed	No
32	Pycnonotidae	Pycnonotus aurigaster	Cucak Kutilang	LC	Not listed	No
33	Pycnonotidae	Pycnonotus goiavier	Merbah Cerukcuk	LC	Not listed	No
34	Pycnonotidae	Rubigula dispar	Cucak Kuning	VU	Listed II	No
35	Rhipiduridae	Rhipidura javanica	Kipasan Belang	LC	Not listed	Yes
36	Sturnidae	Acridotheres javanicus	Kerak kerbau	VU	Listed II	No
	<u> </u>	Diversity index (H')= 2,52	<u> </u>			

Source: Primary Data, 2023

The Javanese Bondol (Lonchura leucogastroides) has the largest population among the studied bird species, with 109 individuals, while the Linci Swallow (Collocalia linchi) follows with 72. The Javanese Bondol is a

resilient bird that thrives in disturbed, created, or artificial ecosystems, as well as in residential areas, both urban and rural, living alongside humans. In contrast, the Linci Swallow inhabits a variety of environments across Java and Bali, ranging from open coastal regions to dense mountainous forests (Kurnia et al. 2021).

These two species of birds typically migrate in small to big flocks, both varieties are prevalent, having large populations and widespread distribution. The bird species diversity index in this study falls within the middle group (H'=2.52). This suggests that the avian community in the study region is rather stable. This is due to the area's relatively high species richness, which includes 29 bird species, yet particular species, such as the Javan Bondol and the Linci Swallow, continue to dominate.

5.7 Mamalia

Mammals perform important functions in ecology as carnivores (predators), herbivores, or omnivores, thereby contributing to the food chain and maintaining environmental balance, predators help manage prey animal populations, and herbivores change plant patterns, thereby impacting forests and flora (Lacher Jr et al. 2019). Based on visual monitoring findings using the Site Count method, only one family was found, namely Tupaiidea, while outside the observation location Sciuridea and members of the suborder Megachiroptera were found but they were not classified at family level. Two members of the Tupaiidea family were discovered at the observation location, the Kekes Squirrel (*Tupaia javanica*), and three members of the Sciuridae family, the Coconut Squirrel (*Callosciurus notatus*). *Tupaia javanica* and *Callosciurus notatus* consume fruit and seeds, which aid in the proliferation of plants. Both may be found in a variety of environments, including lowland woods, mountain forests,

gardens, and urban areas, and they are quite adaptable to the human environment. (Kwatrina et al. 2023).

5.8 Herpetofauna

Herpetofauna is a category of vertebrate creatures that includes amphibians and reptiles. The habitats and lifestyles of amphibians and reptiles are said to be comparable. Herpetofauna are crawling creatures whose body temperature is determined by the temperature of their surroundings, often known as poikilotherms. In addition, these animals have an exothermic metabolism. (Muia 2023). Herpetofauna is relatively significant in the ecosystem, serving as a component of the food chain and contributing to ecological stability. Herpetofauna play a vital role in the food chain and serve as environmental bioindicators (Velasco et al. 2024).

According to observations, the garden lizard (*Eutropis multifasciata*) was the most prevalent herpetofauna (32 individuals). This lizard is commonly found in warm-weather plantation areas. This lizard's characteristic activity is sunbathing or basking. Sunbathing is essential for the survival of ectothermic species, particularly lizards, because their body temperature is heavily impacted by the ambient temperature (Gaudenti et al. 2021) The availability of insects also impacts the number of actions detected in these lizards, because insects are their food source. Table 8 is the herpetofauna types identified in the study area, is follow:

		Table 8: The herpetofauna types in	dentified in the study area			
No	Familia	Scientific name	Local name	IUCN	CITES	UU
1	Agamidae	Bronchocela cristatella	Bunglon Jambul Hijau	LC	Not listed	No
2	Agamidae	Draco volans	Cicak Terbang	LC	Not listed	No
3	Colubridae	Dendrelaphis pictus	Ular Tampar	LC	Not listed	No
4	Colubridae	Gonyosoma oxycephalum	Ular Bajing	LC	Not listed	No
5	Dicroglossidae	Occidozyga sumatrana	Bencet Rawa	LC	Not listed	No
6	Gekkonidae	Gecko gecko	Tokek	LC	Listed II	No
7	Gekkonidae	Hemidactylus frenatus	Cicak Kayu	LC	Not listed	No
8	Gekkonidae	Hemidactylus garnotii	Cicak Rubah	LC	Not listed	No
9	Microhylidae	Microhyla palmipes	Percil Berselaput	LC	Not listed	No
10	Ranidae	Chalcorana chalconota	Kongkang Kolam	LC	Not listed	No
11	Rhacophoridae	Polypedates leucomystax	Katak Pohon Bergaris	LC	Not listed	No
12	Scincidae	Eutropis multifasciata	Kadal Kebun	LC	Not listed	No
13	Scincidae	Eutropis rugifera	Kadal Serasah Bergaris	LC	Not listed	No
14	Scincidae	Lygosoma quadrupes	Kadal-ular Kecil	LC	Not listed	No
15	Scincidae	Subdoluseps bowringii	Kadal-pasir Bowring	LC	Not listed	No
		Diversity index (H')= 2,07				

Source: Primary Data, 2023

Another variety that is frequently observed at observation sites is Eutropis jasafera, which may be found along all observation routes. During observations, E.rugifera was frequently detected in leaf litter. *E.rugifera*, also known as the striped litter lizard, lives in litter habitats where it preys on tiny arthropods. It also climbs approximately 1-2 meters in the bushes and is active throughout the day (Amarasinghe et al. 2021).

The existence of amphibians in an environment is closely related to the presence of water. Amphibians need water to complete the metamorphosis cycle and become adults (Liedtke, Wiens, and Gomez-Mestre 2022). This research found four types of amphibians in very low numbers due to the arid environment of the observation area and the lack of water sources nearby. This also has an impact on the Shannon-Wienner diversity index in herpetofauna taxa which is classified as moderate (H'=2.07). The absence of water bodies and dry substrate conditions indicate minimal presence of amphibians.

5.9 Important species have been identified.

In the research location, two protected species of eagles were found: the Kipasan Eagle (*Rhipidura albiscapa*) and the Bido Snake Eagle (*Spilornis cheela*). The Kipasan Eagle is protected due to hunting pressure that has led to a decline in its population, while the Bido Snake Eagle is protected because of its important role as a top predator in maintaining the balance of the food chain. Although both are raptors, they are not endemic species and can be found in various habitats across Java. Like other birds, the Bido

Snake Eagle and Kipasan Eagle can adapt to different environments as long as there is sufficient food and nesting sites.

The Kipasan Eagle (*Rhipidura albiscapa*) is a small bird (11.5-21 cm long) with a tail that is longer than its wings. When the tail is folded, the tip is rounded; however, when it is spread out or when foraging in the air, the tail takes on a distinctive fan shape, which gives rise to the family name (Sotnychuk 2021). The Bido Snake Eagle (Spilornis cheela) is a large eagle found in the research location, with a range extending from India in the west to Nepal and Sri Lanka, then east to China, south through Southeast Asia, the Malay Peninsula, the Greater Sunda Islands, and finally Palawan in the Philippines. This eagle belongs to the Accipitridae family. The primary prey of the Bido Snake Eagle includes small snakes, birds, and mammals such as mice (Damayanti, Marhaento, and Poedjirahajoe 2022). Additionally, two avifauna taxa are classified as vulnerable (VU): the yellow cucak (Rubigula dispar) and the buffalo lizard (Acridotheres javanicus). Both are vulnerable and need conservation due to overharvesting for use as songbirds. While the yellow cucak is relatively common in the research location, the buffalo lizard is harder to find. The presence of these two species is quite natural, considering that teak forests provide an ideal habitat for insect-eating birds like them (Lubis 2017).

Based on flora indicators, Mahogany (Swietenia macrophylla), Teak (Tectona grandis), and Sono Keling (Dalbergia latifolia) are popular production plants that have experienced overharvesting, resulting in a decline in their populations, according to IUCN statistics. Teak is classified as at risk, indicating that it is more likely to become endangered compared to other species. Nevertheless, its use as a production wood allows Teak

and other timber species to continue thriving, making them a common feature in the lowland forests of Java.(Pavitt et al. 2021)

6. CONCLUSIONS

Plants are the most diverse taxon (66 species), followed by avifauna and lepidoptera (36 species each), herpetofauna (15 species), odonata (7 species), and mammals (4 species). Important plant taxa discovered during this inquiry include *Tectona grandis, Swietenia macrophylla, Dalbergia latifolia, and Didymoplexis pallen. Spilornis cheela, Riphidura javanica, Pycnonotus melanicterus, Acridotheres javanicus, Tupaia javanica, and Gecko gecko are among the most common species encountered. The diversity index, especially for mammals, cannot be calculated because the number of species observed does not meet the requirements of the Shannon-Wienner diversity calculation.*

The main recommendation is to manage and monitor the impact of the toll road development plan on biodiversity based on the analysis of flora and fauna. Some portions of the studied teak forest (tectona grandis) will need to be cleared; however, the fauna in the area is considered safe, as no species rely on a specific environment. To mitigate the impact of land clearing, replanting efforts should be implemented. Recommended species for replanting include: Ficus spp. Mahogany (Swietenia macrophylla) sono keling (Dalbergia latifolia) teak (Tectona grandis). These species were chosen based on their dominance in the area and their suitability for the natural habitats of local wildlife. This approach not only aids in ecosystem recovery but also ensures that biodiversity in the region is preserved during and after development. Additionally, ongoing monitoring should be conducted to assess the success of the replanting efforts and the health of the fauna following construction. Engaging local communities in these efforts can also enhance conservation outcomes and promote sustainable practices.

REFERENCES

- Ahmed, M.J., Ghulam, M., Hamayun, S., and Tariq, H., 2020. Distribution Pattern and Associated Flora of Jurinea Dolomiaea in the Western Himalayan Highlands of Kashmir: An Indicator Endemic Plant of Alpine Phytodiversity. Ecological Indicators, 116, Pp. 106461.
- Akçay, H.G., 2020. Automated Bird Counting with Deep Learning for Regional Bird Distribution Mapping. Animals, 10 (7), Pp. 1207.
- Amarasinghe, A.A., Thasun, 2021. Herpetofaunal Diversity of West Bali National Park, Indonesia with Identification of Indicator Species for Long-Term Monitoring. Global Ecology and Conservation, 28, Pp. e01638.
- Amori, G., Spartaco, G., and Kristofer, M.H., 2008. Diversity, Distribution, and Conservation of Endemic Island Rodents. Quaternary International, 182 (1), Pp. 6–15.
- Assidiq, H., Nurul Habaib Al Mukarramah, and Siti Nurhaliza Bachril. 2021. Threats to the Sustainability of Biodiversity in Indonesia by the Utilization of Forest Areas for National Strategic Projects: A Normative Review. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12071.
- Aumeeruddy, M.Z., and Mohamad, F.M., 2022. Global Use of Folk Medicinal Plants against Hypercholesterolemia: A Review of Ethnobotanical Field Studies. Journal of Herbal Medicine, 32, Pp. 100536.
- Berg, C.C., and Edred, J.H.C., 2005. Moraceae: Ficeae. Flora Malesiana-Series 1, Spermatophyta, 17 (2), Pp. 1–702.
- Bond, A., 2020. Explaining the Political Nature of Environmental Impact Assessment (EIA): A Neo-Gramscian Perspective. Journal of cleaner production, 244, Pp. 118694.
- Bond, A., Jenny, P., Angus, M.S., and Francois, R., 2021. Taking an Environmental Ethics Perspective to Understand What We Should Expect from EIA in Terms of Biodiversity Protection. Environmental Impact Assessment Review, 86, Pp. 106508.
- Chowdhury, S., 2023. Insects as Bioindicator: A Hidden Gem for Environmental Monitoring. Frontiers in Environmental Science, Pp. 11.
- Damayanti, N., Marhaento, H., and Poedjirahajoe, E., 2022. Evaluation of Blocking Area Management Based on Ecological and Socio-Economic Sensitivity Mapping in Sermo Wildlife Sanctuary, Kulon Progo,

- Yogyakarta. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12041.
- Dantas, Barbara F et al. 2020. Rainfall, Not Soil Temperature, Will Limit the Seed Germination of Dry Forest Species with Climate Change. Oecologia, 192 (2), Pp. 529–41.
- Fitriana, N., 2016. Diversitas Capung (Odonata) Di Situ Pamulang Kota Tangerang Selatan, Banten. Jurnal pro-life, 3 (3), Pp. 228–40.
- Frahtia, K., Mohamed, R.A., and Chakib, D., 2022. Diversity and Richness of Day Butterflies Species (Lepidoptera: Rhopalocera) in the Chettaba Forest, Constantine, Northeastern Algeria. Biodiversitas Journal of Biological Diversity, 23 (7).
- Francis, C., 2019. Field Guide to the Mammals of South-East Asia. Bloomsbury Publishing.
- Fuentes-Montemayor, Elisa, K.J.P., Kypfer, C., and Kevin, W., 2022. The Long-Term Development of Temperate Woodland Creation Sites: From Tree Saplings to Mature Woodlands. Forestry: An International Journal of Forest Research, 95 (1), Pp. 28–37.
- Gaudenti, N., 2021. Habitat Heterogeneity Affects the Thermal Ecology of an Endangered Lizard. Ecology and Evolution, 11 (21), Pp. 14843–56.
- Gibru, A., and Girma, M., 2019. Species Diversity and Relative Abundance of Avifauna in Lake Hawassa and Its Adjoining Areas, Southern Ethiopia. J. Biodivers Endanger Species, 7, Pp. 3.
- Grimaldi, D.A., 2023. The Complete Insect: Anatomy, Physiology, Evolution, and Ecology. Princeton University Press.
- Hasanah, M., Fatchur, R., and Hendra, S., 2021. Environmental Indicators Based on Odonata Diversity around the Springs in Malang Raya, East Java. In AIP Conference Proceedings.
- Hasiholan, F., Ismanti, S., and Rifa'I, A., 2023. Comparison Between Liquefaction Potential Index and Liquefaction Risk Index In Solo-Yogyakarta-YIA Kulon Progo Toll Road (STA. 07+ 500–STA. 16+ 700)." In IOP Conference Series: Earth and Environmental Science, IOP Publishing, Pp. 12029.
- Howell, H.J., 2023. The Ecology, Conservation, and Management of the Everglades' Herpetofaunal Community.
- Inuwa, A.R., and Bilyaminu, H., 2020. Diversity Of Regenera Diversity Of Regenerating Tree Species In Response To Ting Tree Species In Response To Different Soil Chemic Different Soil Chemical Proper Al Proper Al Properties In P Ties In P Ties In Parkland Area Arkland Area Of Gwarzo Local Government, Kano State.
- Isworo, E., 2023. The Social Impacts of Large-Scale Land Acquisition on Local Communities Livelihood (The Case of New Yogyakarta International Airport, Indonesia).
- IUCN. 2021. The IUCN Red List of Threatened Species, Version 2021-1.
- Kirton, L.G., 2021. A Naturalist Guide to the Butterflies of Peninsular Malaysia, Singapore, and Thailand (Naturalists' Guides). 3rd ed. London.
- Krisnawati, A., and Adie, M.M., 2017. Protein and Oil Contents of Several Soybean Genotypes under Normal and Drought Stress Environments at Reproductive Stage. International Journal of Bioscience, Biochemistry and Bioinformatics, 7 (4), Pp. 252–61.
- Kurnia, I., Harnios, A., Ani, M., and Rachmad, H., 2021. The Potential of Bird Diversity in the Urban Landscape for Birdwatching in Java, Indonesia. Biodiversitas Journal of Biological Diversity, 22 (4).
- Kwatrina, R.T., 2023. Mammals Diversity in Indonesian Oil Palm Plantation: Identifying Its Functional Role in the Agroecosystem. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, Pp. 12005.
- Lacher, J., Thomas, E., 2019. The Functional Roles of Mammals in Ecosystems. Journal of Mammalogy, 100 (3), Pp. 942–64.
- Lee, C.KF., Keith, D.A., Nicholson, E., and Murray, N.J., 2019. Redlistr: Tools for the IUCN Red Lists of Ecosystems and Threatened Species in R. Ecography, 42 (5), Pp. 1050–55.

- Liedtke, Christoph, H., Wiens, J.J., and Gomez-Mestre, I., 2022. The Evolution of Reproductive Modes and Life Cycles in Amphibians. Nature communications, 13 (1), Pp. 7039.
- Lubis, M.I., 2017. Implementation of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and Law No, 5 of 1990 on the Conservation of Biological Natural Resources and Its Ecosystems in Law Enforcement Efforts and Guarantees of Environ." JILS 2, Pp. 55.
- MacKinnon, J., 2021. Guide to the Birds of China. Oxford University Press.
- Mallick, M.A., 2023. Abundance, Habitat Preference and Seasonal Patterns of Different Butterfly Species (Order: Lepidoptera): A Preliminary Study in West Bengal State University (WBSU) Campus, West Bengal, India. Int. J. Adv. Res. Biol. Sci., 10 (3), Pp. 6–21.
- Mazuze, G.L., Sá Nogueira, L., Nhiuane, O.E., and Sitoe, A.A., 2024. Recovery Status of Coastal Vegetation in Mozambique: Insights from Floristic Composition and Soil Organic Carbon Analysis. Global Ecology and Conservation, Pp. e02952.
- McAlpine, K.G., Lamoureaux, S.L., and Timmins, S.M., 2021. Understory Vegetation Provides Clues to Succession in Woody Weed Stands. New Zealand Journal of Ecology, 45 (1), Pp. 1–10.
- Muia, C., 2023. Analysis of Herpetofauna Diversity and Trends in Upland Northern Mississippi Hardwood Forest and Retired Farmland.
- Nitin, R., 2018. Larval Host Plants of the Butterflies of the Western Ghats, India. Journal of Threatened Taxa, 10 (4), Pp. 11495–550.
- Parikh, G., Deepak, R., and Nitasha, K., 2021. Insects as an Indicator for Environmental Pollution. Environmental Claims Journal, 33 (2), Pp. 161–81
- Pavitt, A., 2021. 666 CITES and the Sea: Trade in Commercially Exploited CITES-Listed Marine Species. Food & Agriculture Org.
- Perron, M.A.C., and Frances R.P., 2020. Water Quality Effects on Dragonfly and Damselfly Nymph Communities: A Comparison of Urban and Natural Ponds. Environmental pollution, 263, Pp. 114472.
- Pongen, R., 2024. Keystone Species: Ecological Architects of Biodiversity and Stability. International Journal of Science and Research Archive, 11 (1), Pp. 1137–52.
- Priya, U.K., and Ramalingam, S., 2021. A Review of the Impact of the Green Landscape Interventions on the Urban Microclimate of Tropical Areas. Building and Environment, 205, Pp. 108190.

- Puletti, N., Marta, G., Mirko, G., and Carlotta, F., 2021. Characterizing Subcanopy Structure of Mediterranean Forests by Terrestrial Laser Scanning Data. Remote Sensing Applications: Society and Environment, 24, Pp. 100620.
- Purnamaningrum, A., Bihi, M.K., and Harits, A.R., 2021. Conservation Status of Bird Species on Promasan Hiking Trail, Mount Ungaran, Central Java. Jurnal Biologi Tropis, 21 (3), Pp. 624–31.
- Rachmawati, A., 2023. Biotic and Dragonfly Diversity Indices as Ecological Quality Evaluation in Lahat District Rivers, South Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 24 (11).
- Schuh, A., and Gisela, I., 2022. Forest Therapy-The Potential of the Forest for Your Health. Springer.
- Semiun, C.G., Mamulak, Y.R., Pani, E., and Stanis, S., 2023. "The Study of Dragonfly (Odonata) Diversity as Bioindicator of Water Quality in Science Techno Park Spring-Beleknehe Village." Jurnal Biologi Tropis 23(1): 174–78.
- She, Yandi et al. 2023. "Relationship between Species Diversity and Community Stability in Degraded Alpine Meadows during Bare Patch Succession." Plants 12(20): 3582.
- Soerjani, Mohamad. 1987. "An Introduction to the Weeds of Rice in Indonesia." Weeds of rice in Indonesia.: 1–4.
- Sotnychuk, Nadya M. 2021. "Form and Function of On-Nest Vocalisation and Renesting Behaviour in the Grey Fantail (Rhipidura Albiscapa)."
- Temenggung, Della, Adhi Saputro, Rullan Rinaldi, and Deasy Pane. 2021. "Managing Recovery and Seizing Reform Opportunities." Bulletin of Indonesian Economic Studies 57(1): 1–28.
- Teristiandi, Novin, and Riyanto Riyanto. 2021. "The Abundance of Odonata Insect in Lebak Swamp, Bukit Baru, Palembang, Indonesia." EnviroScienteae 17(1): 89–96.
- Velasco, Jerald M et al. 2024. "Willingness-to-pay for the Conservation of Endangered Frog Species in Taiwan." Natural Resource Modeling: e12395.
- Westrip, J R S. 2022. "BirdLife International." Cherkaoui, I., Azafzaf, H., Chokri, MA, Benmammar Hasnaoui, H., Monti, F. & Garrido López, JR: 2021–22.

